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Approximate string matching is to find all the occurrences of a query string in a text database allowing a specified number of errors. Approximate string
matching based on the n-gram inverted index (simply, n-gram Matching) has been widely used. A major reason is that it is scalable for large databases since
it is not a main memory algorithm. Nevertheless, n-gram Matching also has drawbacks: the query performance tends to be bad, and many false positives
occur if a large number of errors are allowed. In this paper, we propose an inverted index structure, which we call the n-gram/2L-Approximation index, that
improves these drawbacks and an approximate string matching algorithm based on it. The n-gram/2L-Approximation is an adaptation of the n-gram/2L
index [4], which the authors have proposed earlier for exact matching. Inheriting the advantages of the n-gram/2L index, the n-gram/2L-Approximation index
reduces the size of the index and improves the query performance compared with the n-gram inverted index. In addition, the n-gram/2L-Approximation
index reduces false positives compared with the n-gram inverted index if a large number of errors are allowed. We perform extensive experiments using
the text and protein databases. Experimental results using databases of 1 GBytes show that the n-gram/2L-Approximation index reduces the index size by
up to 1.8 times and, at the same time, improves the query performance by up to 4.2 times compared with those of the n-gram inverted index.
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indexing algorithms and online algorithms. The former uses
indexes, while the latter does not. There have been a number
of efforts on online algorithms, but relatively few on indexing
agorithms. Since online algorithms typically use a sequential

1 INTRODUCTION

Approximate string matching is to find all the occurrences of
a query string in a text database allowing a specified number

of errors[8]. It has a number of applications such as those for
searching text documentswith typo’serrorsand for finding DNA
or protein sequences with possible mutations. DNA or protein
sequences can be regarded as a long text over specific alpha-
bets(e.g., {A,C,G, T} in DNA)[6].

The algorithms for approximate string matching are classi-
fied into two categories depending on whether they use indexes:
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scan over the entire database, they are not easily scalable for
large databases. Thus, it has been pointed out that developing
indexing algorithms is very important [6]. Indexing algorithms
are classified depending on the types of theindex structuresthey
use. The indexes used include the suffix tree, suffix array, g-
sample index, and n-gram inverted index (simply, the n-gram
index) [8].
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Indexing algorithms based on the n-gram index (simply, n-
gram Matching) has been widely used for approximate string
matching due to the following advantage: the n-gram index is
easily scalable for large databases becauseit is not amain mem-
ory agorithm, and thus, is not limited by the size of main mem-
ory[1, 3, 8]. n-gram Matching retrieves candidate results by
finding documents that contain n-grams extracted from a query
string, and then, performs refinement by using an online algo-
rithm[7]. Despite these advantages, n-gram Matching also has
the following drawbacks. First, the query performance tends to
be bad because of largeindex size[7, 8, 14]. Second, many false
positives occur if alarge number of errorsare allowed|[7, 8]. In
an extreme case, n-gram Matching is not capable of reducing the
candidates despite of using an index.

In order to solvethe these drawbacks, we adapt the n-gram/2L
index [4], which the authors have earlier proposed for exact
matching, to approximate string matching. Then-gram/2L index
reducesthesize of theindex andimprovesthequery performance
compared with the n-gram index by eliminating the redundant
informationthat existsinthen-gramindex. Inthispaper, wepro-
posethen-grany2L-Approximation index, whichisan adaptation
of the n-gram/2L index. We then propose an approximate string
matching algorithm based onit. The n-gram/2L-Approximation
index is constructed in two levels just in the same way as the
n-gram/2L index is: the back-end index and the front-end index.

The n-gram/2L-Approximation index inherits the following
excellent properties of the n-gram/2L index. First, the n-
gram/2L-Approximation index improves the query performance
compared with n-gram Matching, and such improvement be-
comes more marked in a larger database or for a longer query
string.  Second, the n-gram/2L-Approximation index reduces
the size compared with the n-gram index, and such reduction
becomes more marked in alarger database. We investigate the
reasons for these desirable propertiesin Section 5.

The rest of this paper is organized as follows. Section 2 ex-
plains approximate string matching. Section 3 presents n-gram
Matching. Section 4 proposes the structure and algorithm of the
n-gram/2L-Approximation index. Section 5 presents the formal
model of the n-gram/2L-Approximation index and analyzes the
size of the index and the query performance. Section 6 presents
theresultsof performance evaluation. Section 7 summarizesand
concludes the paper.

Table1l Summary of notation.

| Symbols | Definitions \
N the number of documents
D; the i-th document (1 <i < N)
d; the identifier of the i-th document (1 <i < N)
D;[p : q] | thesubstringof D;, consisting of charactersfrom

the p-th one
through the g-th one (p < ¢)
0 the query string

Len(s) | thelength of the string s
k the error tolerance (user-specified maximum ac-
ceptable edit distance)
o the error ratio (= ﬁ(g))
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2. PROBLEM DEFINITION

In this paper, we deal with approximate string matching. Ap-
proximate string matching is to find the set of pairs of the doc-
ument and offset where a query string matches within a given
error tolerance[6]. A number of distance measures have been
proposed for measuring errors between two strings, and the edit
distance[6] is the most widely used one. We also use the edit
distance as the distance measure.

The edit distance between two stringsx and y isdefined asthe
minimal number of edit operations needed to convert x into y (or
y into x). Here, an edit operation means insertion, deletion, or
substitution of a character. edit(x, y) denotes the edit distance
between x and y, and x matches y within k errorsif and only if
edit(x,y) <k.

Wefirst summarizein Table 1 the notation to be used through-
out the paper. In Table 1, theerror ratio « meanstheratio of the
error tolerance to the length of query string, i.e., #(Q).

Now, we formally define approximate string matching in Def-
inition 1 by using the notations in Table 1.

Definition 1 Supposethat aquery string Q, an error tolerancek,
andaset of documents{D1, Do, ..., Dy} aregiven. Approximate
string matching istofindtheset {(d;, p)} of pairsof theidentifier
d; of D; and offset p that satisfy edit(Q, D;i[p : q]) < k for
some offset . O

3. RELATED WORK

In this section, we explain n-gram Matching. Then, we dis-
cuss its advantages and disadvantages. n-gram Matching is per-
formed in thefollowing two steps[8]: (1) finding candidate doc-
umentsthat satisfy anecessary condition by searchingthen-gram
index with n-grams extracted from a query string; (2) doing re-
finement in order to find final results by using online algorithms.
The necessary condition used in the first step is proposed by
Navarro et al. [8] and Gravano et al. [3] asin Lemma 1.

Lemmal [The necessary condition for n-gram Match-
ing] [3, 8]: Suppose that a query string Q, a document D, and
an error tolerance k satisfy edit(Q, D[p : q]) < k for some
offsets p and ¢g. The query string Q is divided into digoint
n-grams {G; }(1 < i < | 222 |). Then, the following two con-
ditions are satisfied: (1) among the set of n-grams {G;}, at least
(| 22@ | ) n-grams {g;}(1 < j < [ 222 | k) appear in
thedocument D; (2) for any n-gram g ;, theoffset o, ; of g; within
0 andtheoffset o4; of g; within D satisfy [(04j — p) — 04| < k.

Proor: We prove the Lemmafor each condition.

Condition (1): edit(Q, D[p : q]) < k means that at most &
edit operations are required to convert Q into D[p : q].
Each edit operation is able to modify at most one of the
| £2@) | p-grams. Thus, among disjoint | 22 | n-grams
{Gy}, at least (| 2242 | — k) n-grams {g;} must remain
unchangedin D[p : ¢]. Thosen-gramsalso must appear in
the document D, which contains D[p : ¢] as a substring.

Condition (2): k edit operations change the offset of g; by at
most k. Thus, the offset o,; of g; within O and the offset
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op; of g; within D[p : g] satisfy |o,; — 04| < k. Since
0pj = (04j — p), wehave [(o4; — p) — 04j| < k.

n-gram Matching has the advantage of being scalable si nce%
isnot bounded by the size of availablemain memory. Incontrast,
the suffix tree and suffix array are not easily scalable for large
databases because the index should reside in main memory and
islimited by itssize[1, 8]. Despitethisadvantage, the query per-
formance of n-gram Matching tends to be bad[7, 8, 14] mainly
for the following reasons. First, finding candidate documentsis
time-consuming because of the large size of the n-gram index.
Thelarge size of theindex makesn-gram Matching read in many
postings from theindex during query processing. Thislargesize
is caused by the method of extracting terms. the n-gram index
extracts n-grams at each character offset in adocument, so that a
very large number of n-grams are extracted from the document.
Second, if alargeerror toleranceisgiven, the refinement process
is also time-consuming because of alarger number of candidate
documents. The number of candidate documents gets larger as
the error tolerance k does since alarger k makes n-gram Match-
ing retrieve documents containing fewer n-grams as candidates
according to Lemma 1. Furthermore, n-gram Matching can not
have the benefit of using the index if the error ratio exceeds a
certain threshold[7]. If & > (e, k > |24 ) n-gram
Matching finds documents containing zero or more n-grams by
Lemma 1, that is, it selects all documents as candidates. We
define the maximum error ratio as % It has been pointed out
as adrawback that n-gram Matching has a low maximum error
ratio compared with other indexing algorithms|[8].

One can argue that we could decrease the time for performing
refinement (simply, refinement time) and increase the maximum
error ratio by reducing the length » of n-grams[3, 8, 10]. When
we use asmaller value of n, since n-gram Matching checks the
necessary condition of Lemma 1 with more n-grams, the num-
ber of candidate documents is reduced, and, at the same time,
the refinement time is reduced. A smaller n also increases the
maximum error ratio 71; Nevertheless, a smaller n drastically
increases the timefor finding candidates (simply, filtration time)
since both the length and the number of posting lists accessed
during query processing are increased. Thus, we can not easily
improve the performance by decreasing », and the problem of a
low maximum error ratio of n-gram Matching can not be easily
solved.

4, N-GRAM/2L-APPROXIMATION INDEX

4.1 Index Structure

Figure 1 shows the structure of the n-gram/2L-Approximation
index. Just like the n-gram/2L index [4], this index consists of
the back-end index and the front-end index. The back-end index
uses an m-subsequence as a term and stores the offsets of the
m-subsequence within documents in the posting list of the m-
subsequence. The m-subsequence is defined as the subsequence
of length m. The front-end index uses an n-gram as a term and
stores the offsets of the n-gram within m-subsequences in the
posting list of the n-gram. We note that n denotes the length of
the n-gram, and m the length of the m-subsequence.
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4.2 Index Building Algorithm

The n-gram/2L-Approximation index is built through the fol-
lowing four steps: (1) extracting m-subsequences, (2) build-
ing the back-end index, (3) extracting n-grams, and (4) building
the front-end index. Figure 2 shows the algorithm for building
the n-gram/2L-Approximation index. We call this algorithm n-
granV2L-Approximation Index Building. InStep 1, thealgorithm
extracts m-subsequences from a set of documents. The build-
ing algorithm of the n-gram/2L index extracts m-subseguences
such that they overlap with each other by n — 1[4]. In con-
trast, this algorithms extracts m-subsequences such that they
are digoint and do not overlap with each other. This intends
to improve the query performance by reducing the number of
m-subsequences accessed in the back-end index. We explain
the method of extracting m-subsequencesin more detail in Sec-
tion 4.4. In Step 2, the agorithm builds the back-end index
using the m-subsequences obtained in Step 1. In Step 3, the
algorithm extracts n-grams from the set of m-subsequences ob-
tained in Step 1. Here, the algorithm extracts n-grams by sliding
awindow of length n by one character in the m-subsequence
and recording a sequence of characters in the window at each
time. We call it the 1-diding technique. In Step 4, the algo-
rithm builds the front-end index using the n-grams obtained in
Step 3.

Example 1 Figure 3 shows an example of building the n-
gram/2L-Approximation index. Supposethatn = 2andm = 4.
Figure 3(a) shows the set of documents. Figure 3(b) shows
the set of the 4-subsequences extracted from the documents.
Since 4-subsequences are extracted such that they are digoint,
those extracted from the document O are “ABCC”, “CDAB”,
and “DABC”. Figure 3(c) shows the back-end index built from
these 4-subsequences. Sincethe4-subsequence“ABCC” occurs
at the offsets 0, 8, and 0 in the documents O, 2, and 3, respec-
tively, the postings < 0, [0] >, < 2,[8] >, and < 3,[0] >
are appended to the posting list of the 4-subsequence “ABCC”.
Figure 3(d) showsthe set of the 4-subsequences and their identi-
fiers. Figure 3(e) showsthe set of the 2-grams extracted from the
4-subsequences in Figure 3(d). Since 2-grams are extracted by
the 1-dliding technique, those extracted from the 4-subsequence
0 are “AB”, “BC", and “CC". Figure 3(f) shows the front-end
index built from these 2-grams. Since the 2-gram “AB” occurs
at the offsets 0, 2, and 1 in the 4-subsequences 0, 2, and 3, re-
spectively, the postings < 0, [0] >, < 2,[2] >, and < 3, [1] >
are appended to the posting list of the 2-gram “AB”. 0

A small value of n in n-gram index decreases the refinement
time and improve the maximum error ratio, but it significantly
increases the filtration time as explained in Section 3. In con-
trast, the increment of the filtration timeis not significant in the
n-gram/2L -Approximation index since the size of the front-end
index is very small compared with that of the n-gram index.
Thus, we can use a smaller n than that of the n-gram index in
order to decrease the refinement time and improve the maxi-
mum error ratio. This is one of the major advantages of the
n-gram/2L -Approximation index compared with the n-gram in-
dex.
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posting lists
of n-grams

posting lists of
m-subsequences

B*-Tree on
m-subsequences

B*-Tree on
n-grams

document identifier
offset where m-subsequence s

V. m-subsequence identifier d.
offset where n-gram t

Ot occurs in m-subsequence v Oi occurs in document d
fv,): frequency of occurrence f(d,s): frequency of occurrence

of m-subsequence s in document d

(b) The back-end index.

of n-gram tin m-subsequence v
(a) The front-end index.

Figure 1l The structure of the n-gram/2L-Approximation index.

Algorithm n-Gram/2L-Approximation I ndex Building:
Input: (1) The document collection D, (2) Thelength m of m-subsegquences, (3) Thelength n of n-grams
Output: The n-gram/2L-Approximation index
Algorithm:
Step 1. Extraction of m-subsequences: for each document in D
1.1 Suppose that adocument d is a sequence of characters ¢,,c;,...,Cn.1;
extract m-subsequences starting from the character ¢.,,(0<i < LN/ mJ) and
record the offsets of the m-subsequences within d.
1.2 If thelength of the last m-subsequence is less than m,
pad blank characters to the m-subseguence.
Step 2. Construction of the back-end inverted index: for each m-subsequence obtained in Step 1
2.1 Suppose that an m-subseguence s occurs in adocument d at offsets 0,0y, ...,0;;
append a posting <d, [0,,0;,...,0; ]> to the posting list of s.
Step 3. Extraction of n-grams: for each m-subsequence obtained in Step 1

3.1 Suppose that an m-subsequence sis a sequence of characters c,,C;,...,C .1 ;

record the offsets of the n-grams within s.

extract n-grams starting at the character ¢; (0<i <L-n+1) and

Step 4. Construction of the front-end inverted index: for each n-gram obtained in Step 3
4.1 Supposethat an n-gram g occurs in an m-subsequence v at offsets 0,,0,,...,0; ;

append a posting <v, [0y,0;,...,0; ]> to the posting list of g.

Figure 2 The algorithm of building the n-gram/2L-Approximation index.

4.3 Query Processing Algorithm

431 Overview

The query processing of the n-gram/2L-Approximation index
is performed in two steps: (1) searching the front-end in-

dex, (2) searching the back-end index. Figure 4 shows an
overview of the query processing algorithm that uses the n-
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gram/2L-Approximation index. In the first step, we find the
m-subsequences that approximately match with a query string
by searching thefront-end index with the n-grams extracted from
the query string. In the second step, we find the documents that
approximately match withthequery string by searchingthe back-
end index with the m-subsequencesretrieved in the first step. In
each step, we obtain the candidate results by performing filtra-
tion, and then, find the final results by performing refinement.
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4-subsequence
disjoint window

document 0 %ABCCCDA ABCC
document 1 %DABCCDA CCDA
document 2 %CDABDAB CDAB
document 3 éABCCDAB DABC

(b) The set of
4-subsequences.

(a) The document collection.

subsequence0 ABCC
subsequencel CCDA
subsequence2 CDAB
subsequence3 DABC

(d) The set of 4-subsequences.

AB
BC
ccC
CD
DA

(e) The set of 2-grams.

posting lists of

4-subsequences 4-subsequences

/—H/
ascc | o, [0]
ccpAl 1, [8]
cpaBJ o, [4]
DABC] 0, [8]

2, (8]
3, [8]
1,04
1,[0]

3,10 |

2, [0]
2,[4]

3,141

(c) The back-end index.

2-grams  posting lists of 2-grams
AB_ Jo,[01] 2, [21]3.[1]]
BC Jlo [11]3.02

cc Jo 21100

cD [ 111112 0]

DA | 1,121 2113, [0]

(f) The front-end index.

Figure 3 An example of building the n-gram/2L -Approximation index.

v

Filtering using the
front—end index

candidate m-subsequences

| Refinement |

m-subsequences
approximately matching
with query string

Step 1.

A

Filtering using the
back-end index

candidate documents

| Refinement |

documents
approximately matching
with query string
Query result

Step 2.

Figure4 An overview of the query processing algorithm that uses the n-gram/2L-Approximation index.

43.2 The Conditionsfor Filtration

The filtration operations in Steps 1 and 2 are performed by
checking whether m-subsequences or documents satisfy nec-
essary conditions. We are able to reduce the number of candi-
dates by filtering out m-subsequences or documents that do not
satisfy the necessary conditions. Since we filter out only the
m-subsequences or documents that do not satisfy the necessary
conditions, no false drop occurs. Hereafter, we call the filtra-
tion operation in Step 1 as the front-end filtration and that in
Step 2 as the back-end filtration. In this section, we explain the
necessary conditions for the front-end filtration and back-end
filtration.

We first define e-match in Definition 2. When ¢ = 0 in Defi-
nition 2, x exactly matcheswith y[p : ¢]. Thisisaspecial case
of e-match and is denoted as O-match.
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Definition 2 A string x e-matches with astring y if two strings
x and y satisfy edit (x, y[p : q]) < k a some offsets p and q.
Here, ¢-offset denotes the offset p, and e-substring(y) denotes
the substring y[p : ¢1. 0

We now explain the necessary condition for the front-end fil-
tration in Theorem 1 and that for the back-end filtration in Theo-
rem 2. Theorems1and 2 are adapted from Lemmal. Theorem 1
isdifferent fromLemmalinthat it assumesn-gramsextracted by
using the 1-dliding technique instead of disjoint n-grams. Theo-
rem 2isdifferent from Lemmalinthat it handlesnot only exact
matching but also approximate matching with the query string.

Theorem 1 [The necessary condition for the front-end fil-

tration]: Suppose that an m-subseguence S e-matches with a
query string Q at an e-offset p, and a set of n-grams {G;}(1 <

computer systemsscience & engineering
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i < m —n+ 1) are extracted from the m-subsequence S by
using the 1-dliding technique. Then, the following two condi-
tions are satisfied: (1) among the set of n-grams {G;}, at least
r=(@m-n+1—(exnngams {g;}(1 < j <r) 0
matches with the query string Q; (2) for any n-gram g;, the
offset o5; of g; within § and the 0-offset o,; of g; within Q
stisfy (04 — p) — o5j| < ¢.

ProoOF: See Appendix A. 0

Theorem 2 [Thenecessary condition for theback-end filtra-
tion]: Supposethat aquery string QO e-matcheswith adocument
D at an ¢-offset p, and e-substring(D) is divided into disjoint
= | L@+ 1 m-subsequences (S} (1 < i < ). Then,
the following two conditions are satisfied: (1) among the set of
m-subsequences {S;}, at least r =t — Lﬁ*ﬂj m-subseguence
{s;}(1 < j < r) [£]-matches with the query string Q; (2) for
any m-subsequence s;, the offset o4; of s; within D and the
L% J-offset o4 of s; within Q satisfy [(04; — p) — 04j] < €.

Proor: See Appendix B. 0

433 Algorithm

Figure 5 shows the agorithm of approximate string matching
that uses the n-gram/2L-Approximation index. We call this al-
gorithm n-granv2L-Approximation Matching. When a query
string Q, a error tolerance k, and a set of documents {D;} are
given as input parameters, the algorithm outputs the set of doc-
uments that k-matches with the query string Q. By Theorem 2,
we need to find m-subsequences that L’;‘J-match% with Q in
order to find documents that k-matches with Q. Thus, the al-
gorithm first finds m-subsequences that Léj—match&e with Q by
substituting e with Léj in Theorem 1. We now explain each step
of the algorithm in more detail.

Step 1: The algorithm extracts n-grams from the query string
Q by the 1-dliding technique and searches the posting lists
of those n-grams in the front-end index. Then, the algo-
rithm performs merge outer join among those posting lists
using the m-subsequence identifier as the join attribute and
findsthe set {S;} of candidate m-subsequences that satisfy
the necessary condition in Theorem 1. Since an candidate
m-subseguence S; typically does not have al the n-grams
extracted from Q, the algorithm performs merge outer join
in Step 1.2. Next, the algorithm checks whether S; indeed
| X |-matches with O by performing refinement. If ; % ]-
matches with Q, it adds the identifier s; of S; into the set
Smatch-

Step 2: The agorithm performs merge outer join among the
posting lists of the m-subsequencesin S, using the doc-
ument identifier asthejoin attribute and obtainsthe set { D; }
of candidate documentsthat satisfy the necessary condition
in Theorem 2. Since a candidate document D; typically
does not have all the m-subsequencesin S,,,q:c1, the algo-
rithm performs merge outer join in Step 2.1. Next, the
algorithm checks whether Q indeed k-matcheswith D; by
performing refinement. If Q k-matcheswith D;, it returns
the pair of theidentifier d; of D; and k-offset p,i.e, (d;, p)
asthe query result.
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4.4 The Method of Extracting
m-Subsequences

The method of extracting m-subsequences in the n-gram/2L-
Approximation index is different from that in the n-gram/2L
index. In the n-gram/2L-Approximation index, we extract m-
subsequences such that they are dijoint as mentioned in Section
4.2. Thisdifference intends to decrease the overhead of search-
ing the back-end index by reducing the size of S,,.cn to be
searched in the back-end index.

Suppose that m-subsequences are extracted such that they
overlap with each other by n — 1 in Theorem 2. Then,
t = L% — 1| m-subseguences are extracted from e-
substring(D). One edit operation is able to give at most two er-
rorstother’ m-subsequencesby applyingit to the part wheretwo
m-subsequences overlap with each other. Thus, k edit operations
isabletogiveat most 2k errorstothet” m-subsequences. No mat-
ter how we apply 2k edit operationsto:” m-subseguences, at least
one m-subsequence with at most L%—H errors appearsin a query
string Q. That is, at |east one m-subsequence | Z |-matcheswith
Q. Therefore, under this assumption, Theorem 2 is modified so
as to search for m-subsequences L%J -matching with Q.

Since L%J > L’;‘J for typical values of n and m (for example,
n=2, m=4 or 5), the number of m-subsequences L%J -matching
with O becomes larger than that of m-subsequences Léj-
matching with Q. We note that the number of m-subsequences
L?—f‘]-matching (or L’;‘J—matching) with Q isthesize of S,,arch-
Thus, it is preferable to extract m-subsequences such that they
aredigoint sinceasmaller size of S,,4:c; Can improve the query
performance.

5. FORMAL ANALYSISOF THE
N-GRAM/2L-APPROXIMATION INDEX

In this section, we present a formal analysis of the n-gram/2L -
Approximation index. In Section 5.1, we formally prove that
the n-gram/2L-Approximation index is derived by eliminating
the redundancy in the position information that exists in the n-
gram index. In Section 5.2, we analyze the space complexity of
then-gram/2L-Approximationindex. In Section 5.3, weanalyze
the time complexity of the n-gram/2L-Approximation index.

51 Formalization

Kim et al.[4] have observed that the redundancy of the posi-
tion information existing in the n-gram index is caused by a
non-trivial multivalued dependency (MVD) [2, 11] and shown
that the n-gram/2L index can be derived by eliminating that re-
dundancy through relational decomposition to the Fourth Nor-
mal Form (4NF). In this section, we show that the n-gram/2L -
Approximation index can be derived in the same way as the
n-gram/2L index is.

For the sake of theoretical development, Kim et al. have first
considered the relation that is converted from the n-gram index
so asto obey the First Normal Form (INF). Thisrelationiscalled
theNDOrelation. It hasthreeattributesN, D, and O. Here, N in-
dicates n-grams, D document identifiers, and O offsets. Further,
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Algorithm n-Gram/2L-Approximation Matching:
Input: (1) The n-gram/2L-Approximation index
(2) A query string Q
(3) A error tolerance k

(4) A document collection {D;}

Algorithm:

1.2.1 Performrefinementon S ;

Step 2. Searching the back-end inverted index:

2.2.1 Performrefinement on D; ;

Output: the set {(d;, p)} of pairsof theidentifier d; of D; and offset p that k-matches with Q

Step 1. Searching the front-end inverted index: let t = | (Len(Q)+1)/m] -1
1.1 Extract n-grams from Q by the 1-dliding technique and search the posting lists of those n-grams.
1.2 Perform merge outer join among those posting lists using the m-subsequence identifier as the join attribute;

find a candidate m-subsequence S that satisfies the necessary condition in Theorem 1.
If § LK/t )-matches with Q, add the identifier 5 of § into the set Sy
2.1 Search the posting lists of m-subsequencesin S,
2.2 Perform merge outer join among those posting lists using the document identifier as the join attribute;

find a candidate document D; that satisfies a necessary condition in Theorem 2.

If Q k-matches with D, return the pair (d;, p) of the identifier d; of D; and k-offset p.

Figure5 The n-gram/2L-Approximation Matching algorithm.

Kimeta. haveconsidered therelation obtained by adding theat-
tribute Sand by splitting theattribute O into two attributesO, and
O,. Thisrelationiscalled the SNDO1 05 relation. It hasfive at-
tributes S, N, D, O1, and O2. Here, Sindicates m-subsequences,
01 the offsets of n-grams within m-subseguences, and O, the
offsets of m-subsequences within documents. The values of the
attributes S, 01, and O appended to the relation SNDO102
are automatically determined by those of the attributes N, D,
and O in the relation NDO. In the tuple (s, n, d, 01, 02) deter-
mined by atuple (n, d, o) of therelation NDO, s represents the
m-subsequence that the n-gram »n occurring at the offset o in
the document d belongs to. o1 is the offset where the n-gram
n occurs in the m-subsequence s, and o2 the offset where the
m-subsequence s occurs in the document d.

Kim et al. have proven that non-trivial MVDs hold in the
relation SNDO;0O; (i.e., the n-gram index) in Theorem 3, and
the n-gram/2L index is derived from the relation SNDO10; in
Theorem 4.

Theorem 3 [4] Thenon-trivial MVDSS—— NO; andS— —
DOy hold inthe relation SNDO;0». Here, Sis not a superkey.

Theorem 4 [4] The 4NF decomposition (SNO1, SDOy) of the
relation SNDO10s is identical to the front-end and back-end
indexes of the n-gram/2L index.

Inthis paper, we also usethe NDO relation and the SNDO1 02
relation for the sake of theoretical development. We note that
some n-grams can not be extracted from a document due to our
method of extracting m-subsequences. We define those n-grams
in Definition 3.
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Definition 3 Suppose that m-subsequences are extracted such
that they are digoint and do not overlap with each other. The
missing n-grams are those that are not extracted since they are
located across two consecutive m-subsequences as in Figure 6.

O

document { = -

m-subsequences {

n-grams C—— 1 missingn-grams

B

Figure 6 An example of missing n-grams.

Suppose that a missing n-gram n occurs at an offset o in a
document d. We call the corresponding tuple (n, d, 0) in the
NDO relation the missing tuple. We call the relation where all
the missing tuples are eliminated from the NDO relation as the
reduced NDO relation. Further, we consider the relation ob-
tained by adding the attribute Sto the reduced NDO relation and
by splitting the attribute O into two attributes O; and O2. We
call thisrelation the reduced SNDO; 0> relation.

Now, we prove that non-trivial MVDs hold in the reduced
SNDO; O relation (i.e., the n-gram index where al the missing
n-grams are eliminated) in Theorem 5.

Theorem 5 The non-trivial MVDs S —-— NO; and S ——
DO, hold in the reduced SNDO1 0> relation. Here, Sis not a
superkey.
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MIN-SOO KIM ET AL

Proor: We omit aformal proof since the steps in the proof are
similar to those of Lemma2 by Kim et a. [4]. O

Intuitively, non-trivial MVDs hold in the SNDO10; rela
tion because the set of documents, where an m-subsequence
occurs, and the set of n-grams, which are extracted from that m-
subsequence, are independent of each other. Thisindependency
hold not only in the n-gram/2L index but also in the n-gram/2L -
Approximation index. Thus, the proof for the n-gram/2L index
can be directly applied to that for the n-gram/2L-Approximation
index.

Example 2 Figure 7 shows an example showing the existence
of the non-trivial MVDs S —— NO; and S —— DOs in the
reduced SNDO; O, relation. Suppose that we build the 2-gram
index on the documents in Figure 3(a). Figure 7(a) shows the
NDO relation converted from that index. Here, the shaded tu-
ples of the NDO relation indicate missing tuples. Suppose that
we convert the NDO relation into the reduced NDO relation by
eliminating all themissing tuples. Figure 7(b) showsthereduced
SNDO; 0O, relation (m = 4) derived from that relation. Here,
the tuples of the reduced SNDO; 0> relation are sorted by the
valuesof theattribute S. In the tuples contained in the thick-lined
box of the reduced SNDO; 0> relation in Figure 7(b), there ex-
ists the redundancy that the DO»-values (0, 0), (2, 8), and (3, 0)
repeatedly appear for the NO;-values (“AB”, 0), (“BC”, 1), and
(“CD”, 2). That is, the NO1-values and the DO»-values form a
Cartesian product in the tuples whose S-value is “ABCC”. We
note that such repetitions also occur in the other S-values.

Kim et al.[4] have shown the process of obtaining the n-
gram/2L index by decomposing the SNDO; 0, relation so asto
obey ANF. Likewise, we obtain the n-gram/2L-Approximation
index by decomposing the reduced SNDO;O; relation so as to
obey 4ANF.

52 Analysis of the Index Size

The space complexity of the n-gram/2L-Approximation index
is the same as that of the n-gram/2L index. This is because,
as shown in Section 5.1, the n-gram2/L-Approximation index
is obtained through relational decomposition to the 4NF in the
same way as the n-gram/2L index is.

Kim et al.[4] have shown that the space complexity of the
n-gram index is O (avgngram X avgdoc), While that of the n-
gram/2L index is O(avgugram + avgdoc). HEre, avg,eram
is the average number of the n-grams extracted from an m-
subsequence, and avgg,. 1S the average number of occurrences
of an m-subsequenceinthedocuments. Equation (5.1) showsthe
ratio of the size of the n-gram index to that of the n-gram/2L in-
dex. Both avg,gram and avgq,. tend to increase as the database
size gets larger. Since (avgngram X aVgdoc) INCreases more
rapidly than (avgngram + avgdoc) does, the ratio in Equa-
tion (5.1) increases as the database size does. Therefore, the n-
gram/2L-Approximation index hasthe characteristic of reducing
the index size more for alarger database.

SiZ€ngram &Ongram X Ggoc
SiZéront +  SiZ€pack Ongram T VYgoc

The size of the n-gram/2L-Approximation index is dependent
onthelengthm of m-subsequence. We denotethe optimal length

(5.)
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of m that minimizes the index size by m,. To find m,, we
preprocess the document collection before building the index.
m, tendsto increase as the database size does. See the work by
Kim et a. [4] for the detailed method of finding m,,.

53 Analysis of the Query Performance

The parameters affecting the query performance of the n-
gram/2L-Approximation index are m, n, the error tolerance &,
and the length Len(Q) of the query string Q. In this section,
we conduct a ballpark analysis of the query performanceto in-
vestigate the trend depending on these parameters. The query
processing time is the sum of the filtration time and refinement
time. By usingasmaller n, the n-gram/2L -A pproximation index
reduces the refinement time compared with the n-gram index as
explained in Section 4.2. In this section, we focus on the filtra-
tion time.

Theanalysis of the query performancein this paper isdonein
away similar to that in Kim et al. [4]. However, The analysisin
this paper isfor approximate string matching queries, and that in
the earlier work isfor exact string matching queries. The details
are completely different in the number of offsets and the number
of posting lists accessed during query processing.

For simplicity of our analysis, we first make the following
three assumptions. (1) the query processing timeis proportional
to the number of offsetsand the number of posting lists accessed.
The latter has a nontrivial effect on performance since access-
ing a posting list incurs seek time for moving the disk head to
locate the posting list. (2) the size of the document collection
is so large that all possible combinations of n-grams(=|X|") or
m-subsequences(=| X |™), where X denotes the alphabet, arein-
dexed in the inverted index (for example, when |X| = 26 and
m =5, |X|™ = 11, 881, 376). Since the performance of query
processing is important especially in a large database, the sec-
ond assumption isindeed reasonable. (3) the number of digjoint
m-subsequences included in a query string Q ist’ = LL"”’T(Q)J
rather thant = L%Q)”J — 1. Third assumption isto simplify
computation.

We summarizein Table 2 the notation to be used for analyzing
the query performance.

531 Analysis of the Number of Offsets Accessed

The ratio of the query performance of the n-gram index to that
of the n-gram/2L-Approximation index is computed through
Equations (5.2)~(5.5). The number of offsets accessed dur-
ing query processing is Koffset X K piise- 1N the n-gram index,
since Koffset IS 28" and K i 1S | 242 |, the query pro-
cessing timeisasin Equation (5.2). Inthefront-end index of the
n-gram/2L-Approximation index, since Koffset iS ——L2% and

K piist is (Len(Q) — n’ + 1), the query processing ?ime is as
in Equation (5.3). In the back-end index of the n-gram/2L -
Approximation index, Koffset IS % Besides, K ;s isthe
number of m-subsequences that e-match with Q (¢ = Lf—,J).
K piiss isatmost (Len(Q)—m+1) x C(m, &)o® becausethenum-
ber of m-subsequences extracted from Q is(Len(Q) —m + 1),
and there exist at most C (m, €)o® m-subsequencesthat e-match
with each m-subsequence. Notethat C (m, ¢)o ¢ isthemaximum
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N [ofo
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AB oo ]|[ccli]s S | N o, fojfo,

AB [ 1 [ 1] [cclzlio 2ecc| AB lololol [corel oA Tilol4
AB [ 1]6]|[cclale2 ABCCl AB [0l 2 8] [comBl DA [ 1 [ 1 |4
AB |2 [ 2| [cclalz ABcCl A8 Lol 3ol [come[ DA 12 0
AB [ 2 5] [cc 3]s asccl BC L1 1o lo] [core[ AR 204
AB |2 [ 8] [colol4 ABcCl BC | 112 8] [comel AB [ 2 [ 1 [ 4
AB [ 3o [coli]a asccl Bc 1113 1ol [come[ AB [2 20
AB |35 ]|[col1]o9 Aasccl cc [ 2lolo] [oABC[ DA 008
BC ol i1]l[colzlo asccl cc 212 18] [oABC[ DA [0 [ 1[0
BC |0 10| [co 3]s ascel oCc 213 [0 [oABC] DA [0 [ 2 [ 4
8C |1 2] [col3]09 CCDAl cC 10118 | [DABCI DA [0 [ 3[4
BC 117 ][0oAlo0]ls CCDA[ cc 10 3 8] [0ABC[ AB [1 [0 [8
BC |26 |[D0Ao0]8 CCDA[ cD [ 1 [ 1 [ 8| [0ABC[ AB [1 [ 1 [0
BC |2 9] [DAl1]o0 CCDA[ cD [ 1 [ 3 [ 8| [DABC[ AB [ 1 [ 2 [ 4
8C |3 |1 DA 1[5 CCOAl DA | 2 [ 1 [ 8] [DABC] AB [ 1 [ 3 [ 4
8C |36 ][ DA 1[0 CCDA[ DA |2 [ 3 [ 8| [DABC[ BC [ 2 [0 [8
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BD 2 8 DA 2 4 CDAB| CD 0 1 4 DABC| BC 2 2 4
CA 27| [DA[3 ][4 coABl D ol 213 [DABC BC [ 2 13 [ 4
cclole|[oAl3 10

(b) An example of the reduced SNDO, O, relation.

(a) An example of the NDO relation.

(sorted by the values of the attribute S)

Figure 7 An example showing the existence of non-trivial MVDs in the reduced SNDO1 05 relation.

Table 2 Summary of notation used for analyzing the query performance.

| Symbols | Definitions

by the al phabet

o the size of the alphabet (= |Z|)

n the length of the n-gram in the n-gram index

n the length of the n-gram in the n-gram/2L - A pproximation index

k the error tolerance (user-specified maximum acceptabl e edit distance)
Kofiset | the average number of offsetsin a posting list
K piis: | the number of posting lists accessed during query processing
C(a,b) | combination: a choose b

t the number of disjoint m-subseguences included in a query string Q

(= | L@ )
€ the error tolerance used in the front-end index ( = L%J)
A the time to randomly access a posting list

number of distinct m-subsequences that can be generated by ¢
edit operations. Hence, the query processing time in the back-
end index isasin Equation (5.4). Finaly, Equation (5.5) shows
the ratio of the query processing times.

Sizengram

L
offset_timengram = x | en(Q)J (5.2
o” n
offset_time frons = W# x (Len(Q) —n' +1)
; o
(5.3
SizZepack

offset_timepger = —— X (Len(Q) —m +1) x C(m, g)o’
o

(5.4)

offset_time,gram

Oﬁ&at_timengram/ZLprproximation

7
oh—n

From Equation (5.5), we know that the time complexities
of those indexes are identical to their space complexities. By
substituting sizegram With O(avgngram X avgaoc), EQua
tion (5.5) shows that the time complexity of the n-gram in-
dex is O(avgngram * avgdoc), While that of the n-gram/2L-
Approximation index is O(avgngram + av&doc). The time
complexity indicates that the n-gram/2L-Approximation index
has a good characteristic that the query performance improves
compared with the n-gram index, and further, the improvement
gets larger as the database size gets larger.

From Equation (5.5), we note that the query processing time
increases at alower rate in the n-gram/2L -Approximation index
than in the n-gram index as Len(Q) gets longer. In the front-
end index, the query processing time increases proportionally to
Len(Q), but it contributes a very small proportion of the total
query processing time because the index sizeisvery small. The
sizeof thefront-endindex ismuch smaller than that of then-gram
index because thetotal size of m-subsequencesis much smaller

(Sizengram X LLEHT(Q)J)

(sizefmn, x (Len(Q) —n' + l)) + (sizeback X (Len(Q) —m + 1) x

C(m,e)o® (55)
(fm—n/

)
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than the total size of documents. Furthermore, in the back-
endindex, Len(Q) little affects the query processing time since
C(”fn—fz"& issmalll. Thisisalso an excellent property sinceit has
béen pointed out that the query performance of the n-gram index
for long queries tends to degrade significantly[14].

53.2 Analysis of the Number of Posting Lists Accessed

To analyze the query processing time more precisely, we should
take the time to locate posting lists into account. The time for
locating posting lists is k ;s x . Hence, by using & ,;;5; com-
puted in Equations (5.2)~(5.4), we derive the time for locating
posting lists as shown in Equations (5.6)~(5.8).

Len(Q)

n

plist_timepgram = A X |

J (56)

plist_timefrony = A x (Len(Q) — n +1) (5.7

plist_timepger = A x (Len(Q) —m + 1) x C(m, €)o®(5.8)

From Equations (5.6)~(5.8), we notethat thetimefor locating
posting lists in the n-gram index is not affected by k, but that,
in the n-gram/2L-Approximation index, it increases as k gets
larger (we note that ¢ = [ £ ]). The reason for this increment
is as follows: the number of m-subsequences e-matching with
Q increases as k gets larger by Equation (5.8), and thus, the
number of posting lists accessed in the back-end index increases.
Here, the number of m-subsequences e-matching with Q shows
astai rcas};{el ike behavior ask getslarger dueto thefloor function
in & = L—,_] .

From tEquation (5.8), we note that the time for locating post-
ing lists in the n-gram/2L-Approximation index is a so affected
by m. plist_timep, increases exponentially as m gets larger.
Hence, if we select (m, — 1) instead of m, for the length of
m-subsequences, we can significantly improve the query per-
formance while sacrificing a small increment of the index size.
Conseguently, we use (m, — 1) for performance evaluation in
Section 6.

6. PERFORMANCE EVALUATION

6.1 Experimental Data and Environment

The purpose of our experimentsisto compare the size and query
performance of the n-gram/2L-A pproximation index with those
of the n-gram index. We use the index size ratio defined in
Equation (6.1) as the measure for the index size and the wall
clock time as the measure for the query performance.

index sizeratio =

the number of pages allocated for the n-gram index

We could use the n-gram/2L index for approximate string
matching. However, for approximate string matching, the fil-
tration performance of the n-gram/2L index is worse than the
n-gram/2L-Approximation index as explained in Section 4.4.
Thus, we do not include experiments for the n-gram/2L index
here.

We have performed experiments using two real data sets. The
first oneisthe set of English text databases —WSJ, AP, and FR
in the TREC databases? — used in information retrieval. We
use three data sets of 10 MBytes, 100 MBytes, and 1 GBytes.
We call each data set TREC-10M, TREC-100M, and TREC-
1G, respectively. The second one is the set of protein sequence
databases—nr, env_nr, month.aa, and pataainthe NCBI BLAST
web site® — used in bioinformatics. We use three data sets of
10MBytes, 100 MBytes, and 1 GBytes. We call each data set
PROTEIN-10M, PROTEIN-100M, PROTEIN-1G, respectively.
We remove tags, spaces, special characters, and numbersin the
TREC databases making the formats of the TREC data and the
PROTEIN data similar to exclude the influence of the format to
the results of the experiments.

To compare the index size, we measure the index size ratio
in the PROTEIN database and TREC database while varying
the database size. When creating the n-gram index, we set the
length n of the n-gram to be 3, which is the most practicaly
used one in n-gram applications[5, 15]. Besides, when creating
the front-end index of the n-gram/2L-Approximation index, we
set the length »’ of the n-gram index to be 2, which is shorter
than n (i.e., 3) as explained in Section 4.2. When creating the
back-end index of the n-gram/2L-Approximation index, we use
(m, — 1) asthelength m of the m-subsequence as explained in
Section 5.3.1. For the trade-off between the filtration time and
the refinement time, n = 3, n’ = 2, and m = (m, — 1) arethe
best for our experimental data (10 MBytes ~ 1 GBytes).

To compare the query performance, we perform three kinds
of experiments while varying the following parameters: (1) the
database size; (2) the length of a query string; (3) the error tol-
erance. We adapt the experiments done in work by Navarro[6],
which isthe well-known work in the area of approximate string
matching. We summarizein Table 3 thekinds of the experiments
and parameters for comparing the query performance.

Experiment 1: We measure the wall clock time while vary-
ing the database size. We set Len(Q) to be 50, which
isthe half of the maximum query length (i.e., 100) used by
Navarro[6]. We set « to be ?13, which isthe half of the max-
imum error ratio of 3-gram index (i.e., %). Thus, k issetto
be8(k = Len(Q) x « =50 x }).

Experiment 2: We measure the wall clock time while varying
the query length for asmall k and alarge k. We set asmall
a to be %, which is a third of the maximum error ratio

of 3-gramindex (i.e, 3). Thus, k is Len(Q) x 3. Weseta

the number of pages allocated for the n-gram/2L-Approximation index

IFor atypical vaueof k, e issmaller than (m —n’). If k islarge enough such
that ¢ islarger than (m — n’), we can not have the benefit of using the front-end
index. Thus,we do not consider this case.
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(6.1)

2htp:/ftrec.nist.gov
3http://www.ncbi .nim.nih.gov/BLAST
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large « to be %, which is two thirds of the maximum error
ratio of 3-gram index (i.e., 3). Thus, k is Len(Q) x 3.

Experiment 3: We measure the wall clock time while varying
theerror tolerance k for ashort Len(Q) andalong Len(Q).
We set a short Len(Q) to be 33, which is a third of the
maximum query length (i.e., 100) used by Navarro[6]. We
set along Len(Q) to be 66, which is two thirds of the
maximum query length used by Navarro.

A query iscomposed of aquery string Q and an error tolerance
k. Here, we repeat the experiment 50 times using randomly
selected queriesfrom the database and present the averageresult.
We use an online algorithm proposed by Ukkonen et al.[12] for
refinement in the same way as Navarro[6] does.

We conduct all the experiments on a Pentium 2.6 GHz Linux
PC with 1 GBytes of main memory and 400 GBytes Seagate E-
IDE disks. Toavoidthebuffering effect of theLINUX filesystem
and to guarantee actual disk 1/O’s, we use raw disks for storing
data and indexes. We use the inverted index implemented in the
Odysseus ORDBM S[13] for all the experiments. The page size
for data and indexes is set to be 4,096 bytes.

6.2 Experimental Resultsfor the Index Size

Figure 8 showstheindex sizeratio asthe database sizeisvaried
for the PROTEIN database and TREC database. Theseresultsin-
dicate that the size of the n-gram/2L - Approximation index isre-
duced compared with that of then-gramindex. Theindex sizera-
tioincreases asthe database size does asanalyzed in Section 5.2.
Figure 8(a) showsthat the size of the 2-gram/2L-A pproximation
index isreduced by 1.5~1.8 times compared with that of 3-gram
index inthe PROTEIN database. Figure 8(b) showsthat the size
of the 2-gram/2L-Approximation index is reduced by 1.3~1.8
times in the TREC database.

6.3 Experimental Results for the Query Per-
formance

6.3.1 Effects of Varying the Database Size

Figure9 showsthequery processing timeof then-gramindex and
n-gram/2L-Approximation index as the database size is varied
for the PROTEIN database and TREC database. These results
indicate that we obtain a larger improvement of the query per-
formance as the database size gets larger as analyzed in Section
5.3.1. Figure 9(a) shows that the improvement in the query
performance is 0.8 times in PROTEIN-100M, but 3.9 times
in PROTEIN-1G. Figure 9(b) shows tendencies similar to Fig-
ure 9(a).

In Figure 9, we aso show the query processing time of the
g-sample index proposed by Navarro et al.[9] for the competi-
tor. A g-sample is a subsequence of length ¢ appearing at fixed
intervals h of a document. (Let us consider a document D as a
sequenceof characterscy, c1, ..., c—1. Theithg-sampleof D is
thesequencecyi—1), ..., Ch(i—1)+9—1-) Sincetheg-sampleindex
consists of more sparse subsequences than the n-gram index, its
sizeissmaller than that of the n-gram index. However, sincethe
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g-sample index checks the necessary condition with |less subse-
quences, the number of candidates increases and, at the same
time, the refinement time increases. Figure 9 shows that the
query processing time of the g-sample index is much larger than
that of the n-gram/2L-Approximation index and even larger than
that of the n-gram index. Here, we set the length ¢ and % to be
6, which is the optimal value for the g-sample index used by
Navarro et a.

6.3.2 Effects of Varying the Query Length

Figures 10 and 11 show the query processing time of the n-
gram index and n-gram/2L-Approximation index as the query
length isvaried for PROTEIN-1G and TREC-1G. These results
indicate that the n-gram/2L-Approximation index improves the
query performance compared with the n-gram index with this
improvement becoming more marked as Len(Q) gets larger as
analyzed in Section 5.3.1. Especialy, the query performanceis
improved by up to 4.2 times compared with that of the n-gram
index forasmall k (i.e., k = Len(Q) x %) and by upto 2.2times
for alargek (i.e., k = Len(Q) x %). Besides, the differencein
the query performance between twoindexesissmaller for alarge
k inFigure 11 than for asmall k in Figure 10. Thisisbecausethe
timefor locating posting listsin the n-gram index is not affected
by &, but that in the n-gram/2L-Approximation index increases
ask getslarger as analyzed in Section 5.3.2.

6.3.3 Effects of Varying the Error Tolerance

Figures 12 and 13 show the query processing time of the n-gram
index and n-gram/2L - A pproximation index astheerror tolerance
isvaried for the PROTEIN-1G and TREC-1G. These resultsin-
dicate that the n-gram/2L-Approximation index improves the
query performance compared with the n-gram index in most
cases. Especialy, the query performance isimproved by up to
1.9 times compared with that of the n-gram index for a short
Len(Q)(i.e.,, Len(Q) = 33) and by up to 3.5 times for along
Len(Q)(i.e., Len(Q) = 66).

It is worthwhile to note that the query processing time of the
n-gram/2L-Approximation index increases rapidly at k = 7 in
Figure 12(a). Thisis because ¢ = Ltk—,J in Equation (5.8) in-
creasesbyoneat k = 7. Infact,e = Owhenk < 6,ande =1
when k > 7. Figures 12(b), 13(a), and 13(b) show tendencies
similar to Figure 12(a).

We can verify that the n-gram/2L-Approximation index im-
provesthe maximum error ratio compared with the n-gram index
inFigures12 and 13. Themaximum error ratio of the2-gram/2L -
Approximation index is 3, while that of the 3-gram index is 3.
In Figure 12(a), the 2-gram/2L-Approximation index is able to
process queries in areasonable time at k = 11 and k = 13
due to alarger maximum error ratio, while the 3-gram index is
not. Figures 12(b), 13(a), and 13(b) show tendencies similar to
Figure 12(a).

7. CONCLUSIONS

In this paper, we have proposed the n-gram/2L-Approximation
index for approximate string matching. The n-gram/2L-
Approximation index reduces the index size and improves the
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Table 3 The kinds of the experiments and parameters for comparing the query performance.

] Experiments \ Parameters \
Experiment 1 | Comparison of the query DataSet | PROTEIN database, TREC database
performance while varying | Data Size 10 MByte, 100 MByte, 1 GByte
the database size Len(Q) 50
k 8
Experiment 2 | Comparison of the query Data Set PROTEIN-1G, TREC-1G
performance whilevarying | Len(Q) 20, 40, 60, 80, 100
Len(Q) k Len(Q) x 5, Len(Q) x §
Experiment 3 | Comparison of the query Data Set PROTEIN-1G, TREC-1G
performance while varying k 0~ L@
k Len(Q) 33, 66
2 2
o & o Py
= 1.8 = 1.8
o // e /
o 1.6 re—s S 1.6
® 214
x 1.4 %3 /
-8 1.2 c 1.2
1 1 1 1 1 1
10M 100M 1G 10M 100M 1G

data size (Byte)

(a) The index size ratio as the
database size is varied.
(data set: PROTEIN, m= m_ 1)

data size (Byte)

(b) The index size ratio as the
database size is varied.
(data set: TREC, m= m 1)

Figure 8 Theindex sizeratio while varying the database size.

—— 3—gram index

—a— 2—gram/2L-Approximation index

6-sample index |
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£
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O
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O 1 =

3 —
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10M 100M

data size (Byte)

1G

(a) The query processing time as
the database size is varied.
(data set: PROTEIN, Len(Q)=50, k=8)

Wall Clock Time (sec)
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100

—
/

1 v
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10M 100M

data size (Byte)

1G

(b) The query processing time as

the database size is varied.
(data set: TREC, Len(Q)=50, k=8)

Figure 9 The query processing time while varying the database size.

query performance compared with the n-gram index. We have
modified the n-gram/2L index [4], which the authors have ear-
lier proposed for exact matching, to improve the performance of
approximate string matching. The modifications are related to
the methods of extracting n-grams and m-subsequences. Dueto
the modifications, we reduce the number of false positives and
improve the maximum error ratio.

vol 22 no 6 November 2007

We have theoretically analyzed the properties of the n-
gram/2L-Approximationindex. First, wehaveprovenin Section
5.1 that our index is derived by the relational normalization pro-
cess that decomposes the n-gram index into 4NF. Second, we
have analyzed the space complexity. Since the space complex-
ity of our index is O (avgngram +avgaoc) and that of the n-gram
index is O (avgngram % avgdoc), thereduction of the index size
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| —— 3—-gram index —=— 2—gram/2L-Approximation index |
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query length Len(@) query length Len(Q)
(a) The query processing time (b) The query processing time
as Len(Q) is varied. as Len(Q) is varied.

(data set: PROTEIN-1G, k = Len(Q)*1/9, m=4)  (data set: TREC-1G, k = Len(Q)*1/9, m=5)
Figure 10 The query processing time while varying Len(Q) for asmall k (i.e, k = Len(Q) x %).
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(a) The query processing time (b) The query processing time
as Len(Q) is varied. as Len(Q) is varied.

(data set: PROTEIN-1G, k= Len(Q)*2/9, m=4)  (data set: TREC-1G, k= Len(Q)*2/9, m=5)
Figure 11 The query processing time while varying Len(Q) for alargek (i.e, k = Len(Q) x %).
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Figure 12 The query processing time while varying k for ashort Len(Q) (i.e., Len(Q) = 33).

computer systems science & engineering



MIN-SOO KIM ET AL

—— 3—gram index

—=— 2-gram/2L-Approximation index |

The maximum error ratio

— "M 0InNe maXimLim Error ratli) s ’
§ 60 of 3—gram index Y
® 50 /74/
e ey
S 30 —*
(@]
o 2 /‘
§ 10 [ I

0 \ \ \ \ \ \

2 6 10 14 18 22 26

error tolerance &

(a) The query processing time
as kis varied.

(data set: PROTEIN-1G, Len(Q)=66, m=4)

Wall Clock Time (sec)

18
16
14
12
10
8l
6
4
2

0
0
0
0
0
0
0
0
0
0

The maximum error ratio - >
of 3—gram index P
E—————
P ——
[ ——
2 6 10 14 18 22

error tolerance k

(b) The query processing time
as kis varied.
(data set: TREC-1G, Len(Q)=66, m=5)

Figure 13 The query processing time while varying k for along Len(Q) (i.e., Len(Q) = 66).

becomes more marked as the database size gets larger. Third,
we have analyzed the time complexity. Since the time com-
plexity is shown to be the same as the space complexity, the
improvement of the query performance becomes more marked
as the database size gets larger. Besides, we have shown that
the query processing time increases at a lower rate in the n-
gram/2L-Approximation index than in the n-gram index as the
guery length gets longer.

We have performed extensive experiments for the index size
and query performance of the n-gram/2L-A pproximation index
varying the data set, database size, query length, and error toler-
ance. Experimental results using real text and protein databases
of 1 GBytes show that the size of the n-gram/2L-Approximation
index is reduced by up to 1.8 (PROTEIN-1G, m = 4) timesand,
at the same time, the query performance is improved by up to
4.2 (PROTEIN-1G, m = 4, « = 3) times compared with those
of the n-gram index.

Overall, we believe that our index is capable of efficiently
handling various applications for approximate string matching,
for example, searching text documentswith typographical errors
and finding DNA or protein sequences with possible mutations.
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Appendix A. Proof of Theorem 1
We prove Theorem 1 for each condition.

Condition (1): One edit operation is able to modify at most »

of (m —n+1) n-grams. ¢ edit operationsare able to modify
a most (¢ x n) of (m — n + 1) n-grams. Thus, among the
set of n-grams {G;}, atleastr = (m —n + 1) — (¢ x n)
n-grams {g;} must appear in the m-subsequence S and the
query string Q.

Condition (2): ¢ edit operations change the offset of g; by at

most e. Thus, the offset o,; of g; within S and the O-offset
oy; Of g; within e-substring(Q) satisfy |o,; — oyj] < e.
Since oyj = (04j — p), wehave [(o4; — p) — o5j| < e.

O

Appendix B. Proof of Theorem 2

We prove Theorem 2 for each condition.

Condition (1): No matter how we apply ¢ edit operations to ¢

m-subsequences, at least one m-subsequence with at most

L7 ] errors appearsin aquery string Q. That is, at least one
m-subsequence L%J -matcheswith Q. Now, wecomputethe
maximum number of m-subsequences | £ |-matching with
Q. Wetry to minimizethe number of m-subsequences | £ |-
matching with Q when ¢ edit operationsareapplied. Thisis
achieved by distributing (| % ] +1) edit operationsamong m-
subseguencesto the extent possible. Themaximum number
of m-subsequences which (1% + 1) edit operations are
applied to is Lﬁﬂj. Thus, at least r = t — Lﬁj
m-subsequences of r m-subsequences must appear in the
query string Q with at most | ] edit operations(i.e., | -
matching with Q).

Condition (2): ¢ edit operations change the offset of s; by at

most e. Thus, theoffset o,,; of s; withine-substring(D) and
the [ £ |-offset o,; of s; within the query string Q satisfy
lowj — 04j| < &. Sinceoy; = (04; — p), We have |(o4; —
p) — 0qj| <e.

O
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